Unbiased degree-preserving randomisation of directed binary networks
نویسندگان
چکیده
Randomising networks using a naive ‘accept-all’ edge-swap algorithm is generally biased. Building on recent results for nondirected graphs, we construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities for directed graphs, which converges to a strictly uniform measure and is based on edge swaps that conserve all inand out-degrees. The acceptance probabilities can also be generalized to define Markov chains that target any alternative desired measure on the space of directed graphs, in order to generate graphs with more sophisticated topological features. This is demonstrated by defining a process tailored to the production of directed graphs with specified degree-degree correlation functions. The theory is implemented numerically and tested on synthetic and biological network examples.
منابع مشابه
Unbiased degree-preserving randomization of directed binary networks.
Randomizing networks using a naive "accept-all" edge-swap algorithm is generally biased. Building on recent results for nondirected graphs, we construct an ergodic detailed balance Markov chain with nontrivial acceptance probabilities for directed graphs, which converges to a strictly uniform measure and is based on edge swaps that conserve all in and out degrees. The acceptance probabilities c...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملMapping Semantic Networks to Undirected Networks
There exists an injective, information-preserving function that maps a semantic network (i.e a directed labeled network) to a directed network (i.e. a directed unlabeled network). The edge label in the semantic network is represented as a topological feature of the directed network. Also, there exists an injective function that maps a directed network to an undirected network (i.e. an undirecte...
متن کاملNon-consensus opinion model on directed networks
Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two...
متن کاملUnbiased sampling of network ensembles
Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. A key requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that exactly match the enforced constraints. Unfortunately, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011